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This paper presents the practical and rigorous solution of the potential flow 
problem associated with the oscillation of a shallow-draft cylinder of infinite 
length on a free surface. The problem is three-dimensional to the extent that 
the amplitude of the cylinder oscillation is periodic along its axis as well as with 
time. The complementary problem associated with the interaction of the fixed 
cylinder with an incident wave train aligned at some oblique angle with respect 
to the cylinder axis is also treated. The use of a Green’s function reduces the 
problem to an integral equation which is solved numerically. Numerical results 
are computed for pressure amplitude distributions, force coefficients, added 
mass and damping coefficients, transmission and reflexion coefficients and wave 
height ratios. 

Introduction 
In  the design of such structures as floating breakwaters and floating bridges, 

dynamic forces due to structure/wave interaction are important factors. Not 
only the forces exerted on the structure due to wave action but the hydro- 
dynamic forces associated with the elastic response of the structure are important. 
The motion of a given structure depends on its elastic properties, its mass 
distribution, and its wetted shape as well as the wave system exciting its motion. 
This paper deals with the hydrodynamic aspects of such a wave/structure 
interaction problem without attempting to determine the motion of a specific 
structure. The geometry under consideration is an infinite length, shallow-draft 
cylinder located at  the free surface. 

In  dealing with the motion of a structure in the presence of wave action it 
is usual to consider the hydrodynamic aspects of the problem in two parts: 
(i) forces acting on the structure due to the incident wave, assuming the structure 
to be fixed; (ii) the added mass and damping forces acting on the structure, 
assuming the structure to be oscillating in otherwise still water. The complete 
problem of the structure excited by wave action with resulting oscillations can 
be represented by the superposition of the two types of fluid motion. 

The boundary-value problem arising from the motion of a floating body of 
arbitrary shape has been formulated by John (1950) but, except for certain 
simple shapes, the resulting equations are difficult and have not been numerically 
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evaluated. Ursell(l949) developed a procedure for treating the two-dimensional 
case of a circular cylinder oscillating in still water. His method may be extended 
to elliptic cross-sections and other rather general two-dimensional forms and 
some results of this extension have been published by Porter (1960). Yu & Ursell 
(1961) treated the problem of a semi-submerged circular cylinder oscillating 
vertically in finite depth water and Gidlund (1963), using the same basic method, 
treated the complementary problem of wave interaction with a fixed circular 
cylinder semi-submerged in water of finite depth. Using the Green’s function 
approach, Kim (1965) treated the case of an  elliptical cylinder and ellipsoid 
oscillating on the free surface. MacCamy (1961,1964) treated the two-dimensional 
motion associated with a shallow-draft cylinder oscillating in heave and roll in 
still water. MacCamy formulated the problem as a regular perturbation problem 
for small values of the draft-beam ratio and calculated the first-order solution 
for an elliptical shape. 

Much less work has been done on the wave/structure interaction problem in- 
volving waves with crests not parallel to the cylinder axis. MacCamy (1957) 
formulated the boundary-value problem arising from the interaction of waves 
with an infinite strip (zero-draft cylinder) located a t  the free surface, the waves 
being incident with crests oriented a t  some oblique angle with respect to  the 
axis of the strip. Neither a numerical procedure nor numerical results were, how- 
ever, obtained. Levine (1965) addressed himself to  a similar problem involving 
wave interaction with a completely submerged circular cylinder near the free 
surface wherein, again, the waves were oriented a t  some oblique angle with 
respect to  the cylinder axis. Transmission and reflexion coefficients only were 
calculated for this case. 

The present paper deals with the interaction of a train of regular deep water 
waves with a shallow-draft cylinder floating a t  the free surface, as well as the 
complementary problem associated with the fluid motion induced by the oscil- 
lation of the cross-section of the cylinder in each of its three degrees of freedom 
(heave, roll and sway). The amplitude of each of the modes of oscillations is 
assumed to  vary sinusoidally along the length of the cylinder. The problem is 
formulated as a boundary-value problem in the parameter, E = draft/beam 
ratio, and the zeroth-order solution (corresponding t o  zero-draft cylinder 
or a plate at the free surface) is considered in detail. The zero-draft problem is 
formulated in terms of the source function, or Green’s function, which results 
in an integral equation of the second kind, of a form similar to  that used by Mac- 
Gamy (1957). This resulting integral equation is solved by numerical methods 
by use of a digital computer and numerical results are presented for pressure 
amplitude distributions, transmission and reflexion coefficients, wave force 
and added mass and damping coefficients and wave height ratios. 

These hydrodynamic quantities are functions of the frequency, CT, or wave- 
length, z, and the angle the wave crests make with the longitudinal axis of the 
cylinder, p, or, more precisely, functions of a = Za2/g = 27G/E and v = asinp, g 
being the acceleration of gravity and Z the cylinder half-beam. Numerical 
results are presented for a zero-draft cylinder and, in order to gain some con- 
fidence in these results, comparisons are made with previous results of others, 
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with asymptotic solutions and by use of Haskind’s relations. All of these com- 
parisons were successful and, therefore, it would seem, on the basis of the limited 
evidence available, that the present method yields accurate results. 

There is a fundamental limitation to the present numerical method, however. 
The kernel of the integral equation oscillates rapidly as a increases. Thus, 
unless the subdivisions are kept small the quadratures occurring in the present 
numerical method become inaccurate. We note, however, that the normal waves 
are the most critical with respect to this limitation since the fluctuation wave- 
length increases with v/a. The numerical results in this paper extend to values of 
a of approximately six, which covers the range of practical interest. 

Formulation of the problem 
The problem set forth herein deals with the fluid motion induced by the oscil- 

lations of a long, shallow-draft cylinder on the free surface as well as the fluid 
motion associated with the interaction of the fixed cylinder with 8 train of regular 
waves incident at some oblique angle with respect to the axis of the cylinder. 
Essentially four separate problems are dealt with: (i) the scattering of waves 
incident at some oblique angle due to the presence of a fixed cylinder; (ii) the 
fluid motion produced by the shallow-draft cylinder oscillating in heave, roll 
and sway, one at  a time, the amplitude of the motion varying sinusoidally along 
the length of the cylinder. 

Consider the region lying outside the infinite cylinder (extending from 
2 = - co to + 00) and below the free surface to be filled with an incompressible, 
inviscid liquid (see figure 1). Assuming that the motion started from rest a velocity 
potential, 0, can be defined by 

(1) 
where B is the fluid velocity vector and where @ must satisfy the Laplace 

v = V@(Z, g , x ,  t ) ,  

V2@(Z, 3, z ,  t )  = 0 equation, 

within the fluid region. 
The amplitude of the motion will be considered small in comparison to other 

lengths involved and, consequently, the square of the fluid velocity occurring 
in Bernoulli’s equation can be neglected, yielding the wave height in terms of 
the time derivative of the velocity potential as 

?l(% 2, t )  = P/g) 0, x, 0, (3) 
when the wave height is considered small. The usual linearized free surface 
boundary condition, 

for all values of Z outside the cylinder, follows from (3). 
The velocity potential for a progressive deep water wave system (incident 

wave) approaching the cylinder with crests aligned at  some angle, p, with res- 
pect to the 2 axis of the cylinder is given by 

q z ,  0, z ,  t )  + (qg) @‘tt(E, 0, x, t )  = 0, (4) 

(5 )  DW(Z, 8, z, t )  = Re e l K B + i ( K ~ o o s B + ~ P s i n 8 - ~ t ) l  
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where K = 2.rrlZ = r 2 / g  is the wave-number, r is the frequency, z is the wave- 
length and g is the gravitational constant. Using (5), the incident wave height 
is calculated from (3) as, 

(6) ??,(z, X, t )  = Re[vw ei(KacosB+Kzsln B-ut)] 

where ?jt is the complex amplitude of the incident wave. 

FIUURE 1. Definition sketch. 

The cylinder is considered to be flexible and to deform in torsion about its 
Z axis and its longitudinal axis is considered to deform sinusoidally in both the 
5 and jj direction. This displacement can be represented by the relationship 

xi@, t )  = Re[z:ei(RBs'nP-d I, (7 )  
which describes a progressive wave travelling in the L direction, where Zg is 
the complex amplitude of oscillation and i = 1 corresponds to sway, i = 2 to 
heave and i = 3 to roll. In  the case of roll x, is not a length but an angle. 

In  considering the interaction of the incident wave with the fixed cylinder 
it is convenient to write Or ,  which represents the velocity potential for the motion, 
as the sum, 

where Qw is the velocity potential for the incident wave and Q4 is called the 
scattering potential. The four velocity potentials which are involved in the 
present problem are, then, defined as 

(8) Or = Ow+ Q4, 

(D1 = velocity potential for x oscillations, sway; 

Q2 = velocity potential for y oscillations, heave; 



Interaction of an inJinite cylinder with a train of oblique waves 23 1 

= velocity potential for 8 oscillations, roll; 

Q4 = velocity potential for scattering of the incident wave. 

The boundary-value problems associated with the four velocity potentials, 
ai (i = 1,2,3,4),  are all similar; for all four problems Qi must satisfy the Laplace 
equation in the fluid region and the free surface boundary condition, equation 
(4), on g = 0. Also, at  a large distance from the cylinder the disturbances must 
become outgoing regular waves. This condition can be stated as, 

Qi(5, g ,  2, t )  -f Re[q e ~ ~ ~ ~ ~ ” ” c 0 ~ B + K B s l n B - ~ ~ t ] l ,  5-+ a, (9) 
where C, is a constant. 

The four boundary-value problems differ only in the kinematic boundary 
conditions to be applied on the surface of the cylinder. This boundary con- 
dition expresses the requirement that the fluid velocity normal to the surface 
must equal the velocity of the cylinder normal to itself. This gives: 

I ,  Q - - n Re[ - igzo 4ut-KBslng) In - x l e  

@2?E = nV Re[ - ig$ e4f l t -K i s in8) ] ,  

1 3  
= (5nv - In,) Re[ - i r Z i  e-W-K*sinB) 

The fluid motion represented by Oiis periodic in time as well as the 2 co-ordinate. 

(11) 

(12) 

In  terms of U, the boundary-value problem can be stated for i = 1,2 ,3 ,4  as: 

Thus, the velocity potential may be written in the form 

and, also, U’, which corresponds to @’ in accordance with (ll),  is defined as 

Qi(Z, y, Z, t )  = Re[Q(5, g )  ei(KBsinP-d)] (i = 1,2,3,4) 

U’(5, g )  = -i(gso/r) eK(:(e+izcoBB)+ U,(E, 8). 

V2U,( 5,g) - ( K 2  sin2 /I) Q( Z, g) = 0 

U,( 5, o)g - KQ( E,  0) = 0 

Q(Z, g)z = Ei(Z, g) 

in the fluid region, 

outside the cylinder, 

on the surface of the cylinder, ] (13) 

q(z ,  g)+CteK@fGcoeS) for Z+ +a, 

where El = - iasnx,  
- 
h, = - i~~ i&~,  

7i3 = - azg(zng- Yn,), 

E4 = (ig?lO,K/a) (nu + in, cosp) eK(~+imCosf l  

and ;ii = in, +jn, + in, is the unit normal vector on the surface of the cylinder. 
Before proceeding to the solution of (13) it is convenient to introduce dimen- 

sionless variables into the problem. Using the cylinder half-beam the following 
dimensionless variables are defined: 

x = q z ,  x: = $/z, ?& = iri”w/a, 
y = g/ii, x! = $/Z, a = Kii = 27riilE = cr2ii/g, 

= qz, xg = eo , v = asin/?. 
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Also, the dimensionless variable, Wx, y), is defined as 

and 

i d g z a ,  yli) 
gxfa 

= uJgE,y) (i = 1,2,3)  

The shape of the cross-section of the cylinder can be defined, in dimensionless 
form, as 

(17) Y(.) = €S(X) ,  

where the parameter ti = draft/half-beam and S(x) has the properties denoted in 
figure 2. 

dX Y(x) = E S(X) 

FIGURE 2. Cylinder cross-sectional shape. S(Z) = S( -x), S(l) = S( - 1) = 0, S(0) = - 1. 

With the de&itions introduced in (14), (15), (16) and (17) the boundary- 
value problem, (13), can be re-stated in concise dimensionless form as follows: 

where 

The solution %of the above-defined boundary-value problem is a function of the 
three dimensionless parameters 8, u and v. 6 reflects the draftlbeam ratio, a 
the ratio of the cylinder size to wavelength and v the angle that the wave crests 
make with the cylinder axis; v = 0 corresponds to the two-dimensional problem. 

For arbitrary values of the three parameters involved, the solution of the 
boundary-value problem stated in (18) is difficult. To make some headway, 
however, one can limit consideration to certain limiting values of the para- 
meters involved. I n  the present treatment small values of the draft/beam ratio 
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are considered by use of a procedure similar to that of MacCamy (1961). Accord- 
ingly, one can assume that the solution can be expanded in powers of 8 as 

K(x, y ;  8) = Ko(x, y )  + E K , ( X ,  y) + €26*(5, y) + . . . . (19) 

Likewise, the functions, hi, can be expanded in a Taylor series about E = 0. 
Then, if these series representations are substituted into the boundary-value 
problem, (18), and coefficients of like powers of E are collected, a series of new 
boundary-value problems is defined for each of the terms of the series in (19). 
The boundary-value problems for the first two terms of the series are listed below: 

where 

First-order problem 

(21a-d) 

V2Ji1(q/)-v2K1(~,Y) = 0 (y ’< O ) ,  

gcx ,  O),-a%Jx, 0) = 0 (1x1 > 11, 

gcx, O ) ,  = hi1(4 + S‘(x)K0(x, O ) ,  - vS(z)Ko(x, 0) + fl(x)V0(x, O),,  (1.1 < 11, 
q z ,  y) --f c1 ea(g*&d(1-v2/a2)) (x+ & co), 

where h&) = -S’(x), 

h&) = 0, 

h3,(X:) = 0, 

hdl(x) = (aS(z) + iS’(x) .J( 1 - vz/a2)) eiad(l-ua/a’). 

It is interesting to note that the problems stated above are of the same type; 
both have the same differential equation, free surface boundary condition and 
asymptotic condition. The only difference lies in the form of the right side of 
condition (c). In  fact, the problems for all of the terms, V,, are similar and differ 
only in the form of the right side of (c). 

The remainder of this paper will deal with the solution of the zeroth-order 
problem, i.e. the problem stated in (20). This problem corresponds to zero-draft, 
that is, a horizontal strip lying on the free surface. For convenience sake, the 
subscript ‘0’ will be dropped and consideration will be limited to i = 2, 3, 4 
since Q1, corresponding to the velocity potential for sway, is trivial because no 
disturbance is caused by a cylinder of zero-draft oscillating in this mode. The 
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boundary-value problem in question for zero-draft and i = 2, 3 , 4  can be stated 
as : 

where 

( 2 2 4  

Green's function 
The solution to the problem stated in (22) can be formulated in terms of Green's 

function. One can proceed to this formulation by applying the Green's theorem 
to the region occupied by the fluid as depicted in figure 3. V(x, y) and the Green's 
function, G(x ,  y; 6,  v), are chosen as subjects for application of the Green's 
reciprocal theorem yielding 

/ / p 2 W , Y ) -  ~2~(~,Y)lG(x,Y;t ,7)aXaY 

- /IR [ v ~ x ,  Y ;  f ; ,7)  - ~ ( z ,  9 ;  f;, 7)i v,(x,Y) axay 

S. 

R I sm 

Y 

FIGURE 3. Definition sketch for applic&ion of Green's theorem. 

where (E, 7) denotes some point interior to the region, R, and n denotes the direc- 
tion of the outward normal at  the surface of the region. If G(x,  y; t, 7) is selected 
such that it satisfies the following differential equation 

V2G(x, y; 5,7) - v2G(x, y; t, 7) = - t) a(Y - 71, (24) 

where a($) is the Dirac delta function, then, (23) reduces to 
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since %( x, y )  satisfies the equation 

VZI$(x, y) - v2@, y) = 0. 

If, further, G(x ,  y; l ,  q) is required to satisfy the free surface boundary condition 
for all values of x and the radiation condition as indicated in ( 2 2 b  and d), the 
integrals in (25) vanish over all of the surfaces except the surface of the cylinder, 
S,, yielding 

av w-, 7) = f ($a Y) - a m ,  Y,) G(Z’ y ;  697) 

ao s 
- f (a, (2, Y ;  l , r )  -G(x,y; l’?I)) V,(Z,Y) CIS. 

S C  

Restricting this further to zero draft, the second integral vanishes since G 
satisfies the free surface boundary condition, 

G ( x ,  0 ; t, 71, -aG(x, 0 ;  t, 9 )  = 0 

as previously noted. Thus, for the zero-draft cylinder (upon reversing the roles 
of x, y and c, 7) the solution to the boundary-value problem, (22 ) ,  may be 
written as 

where the distribution function, fi, is defined as 

fi(x) = x(x, O ) ,  - O ) ,  for 1x1 G 1. (27) 

In  developing (26) a number of requirements were placed on the Green’s 
function. In  summary these are: 

(28a-c) 1 V2Q(x, y ; l )  - v2G(x, y; 4 = 4% - l )  S(Y), 
G(x,  0; Q, - aG(x, 0; 5) = 0 for all z, 
G(z ,  y; l)-+Cea(yfizv‘(l--v2ia2)) (x - t  00). 

Equations (28a-c)  define a boundary-value problem for the Green’s function 
which is similar to, but simpler than, the original problem for I$. According 
to (28), the Green’s function must satisfy the basic differential equation of the 
problem, except a t  the point (c, 0 ) ,  the free surface boundary condition for all 
values of x (rather than for 1x1 2 1 as was required of K) and must represent an 
outgoing regular wave at  x-+ & co. 

The solution to (28) for the Green’s function can be obtained by use of the 
Fourier and Laplace transforms applied to the x - 6 and y variables, respectively. 
The result of this procedure yields the Green’s function, 

(where k = d(C2+va)) which satisfies (280) and ( 2 8 b )  and approaches zero for 
y+ -a, as required by ( 2 8 c ) .  However, this integral deserves further consid- 
eration since it possesses singularities at  { = _+ ,/(a2 - v2) and its satisfaction of 
the radiation boundary condition for x- c+ f 00 has yet to be tested. 
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To examine the Green’s function further the infinite integral in (29) can be 
expressed as one segment of a contour integral in the upper half 6 plane. If the 
contour indicated in figure 4 is taken for x - 5 > 0 where the branch cut extending 
from iv to ico is observed, the resulting expression will satisfy (28c) at  x - [+ -I- co. 
A reflexion of this contour into the lower half < plane will result in a similar ex- 
pression for G for x- 6 c 0,  differing only in the sign of x - 6. Thus, placing 

* n V k I 
r v - 

-./(U*-v’) + d(a*-Y*) 

FIGURE 4. Integration path for (z - 5) > 0. 

absolute value signs about x - g occurring in these expressions yields the follow- 
ing form for the Green’s function which satisfies all of the conditions stated in 
(28) for all values of x - [: 

+ ;[a/J(aZ - y 2 ) ]  eil/(d-@) 1x-51 cay- (30) 

Now that the Green’s function has been obtained, we turn to the evaluation 
of the distribution function, fi(x), by application of the kinematic boundary 
condition on the surface of the cylinder. Substituting ( 2 6 )  and ( 2 2 c )  into (27) 
yields the following integral equation for f i ( x )  : 

The integral equation (31) can be solved by numerical methods but in order 
to do so it is necessary to evaluate its kernel on y = 0. To this end (30) is evaluated 
on y = 0 and the integral term occurring therein is arranged in parts yielding: 
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The third integral term in the above expression is given by Grobner & Hofreiter 
(1966) as 

JOm ;2-!z 1;; u du 
2 2 - 1  

= $7 sin (.J(u2 - 9) [ x - < I  ) 

-sin(.J(a2-v2)Ix-[l)Si (.J(a2-v2)Ix-[/) 

- cos (4 (a2 - v2) 1x - 61) Ci (J(u2- v2) I x - El ), 
where Si and Ci denote the integral sine and integral cosine, respectively. The 
complete Green's function is, therefore, given by 

The desired result has been obtained; the Green's function which is the kernel 
of the integral equation, (31),  has been arranged in a form which can be numeric- 
ally evaluated on y = 0. The two remaining integrals in (33) must, however, be 
evaluated by numerical integration but this is not a particularily difficult task 
since the first integral term has finite limits of integration and the second, although 
containing an infinite upper limit, is rapidly convergent. 

It is noted that Ci(z), in (33), is singular like ln(z) as z+O. Thus, as Ix-61 + O  
the integral cosine term will cancel the lnlz - 61 term so that the whole expression 
within brackets will be regular while the last term will provide a logarithmic 
singularity at  Ix-EJ = 0. 

Numerical analysis 
The essential problem remaining in the original boundary-value problem is 

the solution of the integral equation, (31). Since the kernel of that equation is 
extremely complex it is natural to attempt a numerical solution. To that end 
the interval x = - 1 to + 1 is divided into m elements of length Ax = 2/rn as 
indicated in figure 5.  The value of xi is then considered to lie at the centre of the 
i th element and if we denote by fni the value off, evaluated at X~ (n = 2,3,4 
corresponds to roll, heave and scattering, respectively) the integral equation 
may be written as 

f ,+aS' ' f , ( t)G(x~-t ,O)dt -1 = h, (j = 1,2,3, ..., rn). (34) 

Furthermore, if we use the value of fni to represent f, over that element, we can 
approximate (34), further, by 

fnj+ufni/ G(Ixj-t[,O)dt = hnj. 
xi+Ax/2 

Xi-Ad2 
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This equation can be written more conveniently in the form of a matrix equation 
as 

where the matrix elements, Hi*, are given by 
zi+Ax/2 

Hij = u s  G( Ixj - t i ,  0 )  dt. 
Xi-Ad2 

(35) 

(36) 

Thus, the solution of the integral equation, (31), reduces to the solution of the 
system of linear equations, or matrix equation, given by (35), for the column 
matrix, Lf,]. 

- 1  t -1 

FIGURE 5. Numerical scheme. 

Except for the case of i = j ,  (36) can be approximated by 

Hij= U G ( I X ~ - Z ~ ~ , O ) A X  (i + j ) ,  (37) 

where G ( ] X ~ - - Z ~ \ )  is evaluated by use of (33). The two integral terms occurring 
in (33) must be evaluated by numerical integration by replacing the infinite 
upper limit in the second integral by a suitably large finite number. The error 
involved in this approximation is discussed in appendix A. 

When i = j the Green’s function is logarithmically singular and, consequently, 
the approximation of the integral given by (37) cannot be used. Instead, we 
must carry out the integration of the logarithmic part analytically as indicated 
in (36). Although lnlxj-t) is infinite at t = xi, its integral over the element is 
finite and easily evaluated. The regular term in (33) can, however, be evaluated 
by the approximate relationship, (37). 

In  utilizing the approximation given by (37) for i + j there arises a question 
of accuracy. Certainly when G is regular H(i, as obtained by (37), converges to  
that given by (36) as 2/m = Ax + 0. However, when the logarithmic term occurr- 
ing in the integrand is evaluated by (37) at i = j f 1 it is not at  all obvious 
that this result converges to that given by ( 3 6 )  as Ax+O. Thus, appendix 
B has been included to show that the use of (37) is justified even for the logarith- 
mic term in G at the most critical condition of i = j k 1. 

A digital computer program was developed to carry out the numerical cal- 
culations for the results presented in this paper. The integrals occurring in 
(33) were evaluated by use of Simpson’s rule, replacing the infinite upper limit 
in the second integral by the value of 50. In  appendix A, it is shown that this 
approximation leads to an error of less than 0.02 percent when compared to the 
complete infinite integral term in (30) evaluated a t  y = 0. 

The value of rn = 40 was used for purposes of calculating the numerical 
results presented in the figures. This made [HI a 40 x 40 matrix and [fn] and [h,] 
40 element column matrices. Preliminary to this, however, results were calculated 
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using m = 20. The discrepancy between the two sets of results wa3 slight, 
becoming significant only at large values of a (say, a > 6.0 at v = 0) and small 
values of vja. We note that this behaviour of the numerical results, however, 
is not surprising since the wavelength of the fluctuations of the Green's function 
(which must be large compared to the subdivision length, 2lm, for good accuracy) 

1 is proportional to 

a .J( 1 - v2/a2). 

Accordingly, the fluctuation wavelength decreases with a but increases with 
v/a, making the two-dimensional case the most critical with respect to this 
limitation. 

We remark that MacCamy (1964), using a numerical procedure similar to the 
present one, also found very little difference between his results obtained 
using m = 12 and m = 36 for the two-dimensional case of the present problem 
for heave. 

Physical quantities 
In order to determine the forces and moments acting on the cylinder due to 

the fluid motion induced by the incident wave train or by the motion of the 
cylinder itself, it is necessary to evaluate the pressure on the surface of the 
cylinder and then calculate the net effect of the pressure distribution. 

If the dynamic pressure is defined as 

?? = P + p g g ,  

where P is the static pressure, Bernoulli's equation gives the pressure in terms 
of the time derivative of the velocity potential as 

- 
n =  -pot, 

provided the velocity squared terms appearing therein are neglected. Taking 
account of the relationship between 0 and V through (1 l), (12), (15) and (1  6) 
we obt+in the pressure on the surface of the cylinder as 

F&c, 0, z, t )  = pgZ Re [x?aT&r, 0 )  eflVS-")] (i = 2,3) 

F'(x, 0, z, t )  = pgZ Re [&(h4(x) - a%@, 0)  ) ei(Vz-d)], 
(38) 

(39) and 

where 3' is associated with 0' (that is, ??' is the pressure due to the interaction 
of the incident wave with the fixed cylinder) and Ei is the pressure due to heave 
and roll in still water. Using equation (27), the dimensionless pressure amplitude 
on the surface of the cylinder can be written as 

and 

The pressure amplitude distributions obtained from these equations are plotted 
in figures 6-10. The two dimensionless parameters given in (40) and (41) can be 
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considered to be the ratio of the pressure in feet of water to the magnitude of 
the oscillation iix: for i = 2 and 3 and the pressure in feet of water to the wave 
height, ii?~:, respectively. 

j?=45;" 
1.2 

1 -0 a=0-01 

j?=W 
I -2 

1 .o a=O.OI 

0.1 

-1.0 -0.6 -0.2 0 +0.2 +0.6 +1.0 

Position on cylinder, m = Z/ti 

FIGURE 10. Pressure amplitude distribution due to wave interaction with cylinder fixed. 

The forces and moments due to the incident wave interaction with the fixed 
cylinder are obtained by numerical quadrature involving the pressure and the 
surface of the cylinder. The wave force and moment are, therefore, given by 

4 = (a or a21 J ?i'h, as, = ds/7i, 
sc 

where Z is used in the case of a force, (i.e.) when i = 2,  and Z2 in the case of a 
moment, when i = 3. Substituting for pressure from (39) and using (27) gives 

In terms of the force (or moment) coefficient, 4, which is defined as 

we have 
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C, is the heave force coefficient and C, is the moment coefficient. These coefficients 
are plotted in figures 11 and 12, respectively. 

The forces and moments associated with the motion of the cylinder are best 
represented in the form of added mass or moment of inertia and damping 
coefficients. These are coefficients of force (or moments) which are proportional 
to the acceleration and velocity, respectively. To develop these coefficients the 

0.8 

0.4 

10.0 

FIGURE 11. Heave force coefficient for wave interaction with cylinder fixed. 
-_-  , circular cylinder, p = Oo, Dean & Ursell (1959). 

a = 22ralZ 

FIGURE 12. Moment coefficient for wave interaction with cylinder fixed. 
16-2 
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ith component of force (or moment) per unit length of cylinder due to the j th  
component of motion of the cylinder is written as 

4 = (a or Zz)/sc ?TihidS, 

where, again, a is used in the case of a force (i = 2) and E2 is used in the case of a 
moment (i = 3). Using (38) and (27) and noting that h; is real gives 

The j t h  component of motion of the cylinder which gives rise to this ith 
component of force (or moment) is given by (7). Taking the derivative of this 
expression with respect to time gives thejth component of velocity as 

(44) = ( 1 or Z) z: r Re [ - i ei(uz-at)], 

xj = ( 1 or a) 3 r2 Re [ - ei(us-d)], 

and the second derivative gives the j t h  component of acceleration, 

(45) 

where 1 is chosen when 4 is an angle, (j  = 3), and Z is chosen when xj is a linear 
displacement, (j = 2). Furthermore, the force (or moment) can be divided into 
two components, one component proportional to the acceleration and one 
component proportional to the velocity as 

- -  - _  
= - lk&Xj-4j~i  (no sum onj),  (46) 

where Btj and xj are added mass and damping factors, respectively. Using (44) 
and (45) we obtain 

where the dimensionless added mass and damping coefficients are defined, res- 
pectively, as 

Comparing (43) with (47) it  is evident that the added mass and damping co- 
efficients are given 

and 
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Due to the symmetry of the cylinder with respect to the x = 0 plane, Xj = qj = 0 
for i $: j. When i = j the proper selection of (1 or Q) and (CC or Q2) has been made 
and the coefficients in their proper form are listed below: 

i = j = 2; y component of force due to y motion (heave), 
added mass coefficient, M,, _= @,,2/pCC2, 

damping coefficient, N,, = N,,/pcrii2. 
i = j = 3; moment about the z axis due to 6 motion (roll), 

added moment of inertia coefficient, 
damping coefficient, Na3 = T33/pa3. 

= M33/pCC4, 

The numerical results obtained for these coefficients are plotted in figures 13-16. 

2.4 

2.0 

1.6 

M*2 
1.2 

0.8 

0.4 

2.8 t I I 

- 

- 

- 

- 

- 

- 

a = &i/g 

FIGURE 13. Added mass coefficient in heave. 

Aside from the results already considered there are a group which may be 
termed ‘far field’ characteristics since they are obtained from the behaviour 
of the velocity potential at  x+ co. These include, for i = 2 and 3, the waves 
produced by the heaving and rolling motion of the cylinder and, for i = 4, 
the transmitted wave at x -+ + 00 and the reflected wave at x-+ - 03. 

In order to calculate the height of the wave produced a t  x-+ ~f: 00 we use the 
asymptotic form of (30) for x+co along with (26) to obtain the asymptotic 
form of as 

e&&.\/(l-uW)) f#) e-i5a*/(1-vslaa) d6, x-+ 00. (52) 1:: i 
m 2  9) 

.J( 1 - q a 2 )  
From Bernoulli’s equation the wave height is related to the velocity potential by 

(53) 
1 

g 
q = --at, 
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0.10 

0 0.5 1.0 1-5 2-0 2.5 3.0 3.5 4.0 4.5 5.0 
a = a%/g 

FIGWBE 14. Added moment of inertia coefficient in roll. 

2.8 

2.4 

2.0 

1.6 

1.2 

0.8 

0.4 

n 

5.5 

- 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

a = &i/g 

FIGURE 15. Damping coefficient in heave. 
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so that (52), (11) and (15) with (53) yield the wave height at x+m relative to 
the amplitude of the cylinder motion as 

OV OI5 IIO 11.5 i0 6 5  k, k S  d 0  k 5  ;O 

v=o 0.12 - 

5.5 

" 0  0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

a = a2iZ/g 

FIGURE 16. Damping coefficient in roll. 



248 C. J. Garrison 

This parameter is called the ‘wave height ratio’ and is plotted in figures 17 and 
18 for heave and roll, respectively. 

For the case of the incident wave interaction with the fixed cylinder the per- 
tinent ‘far field’ characteristics are the heights of the transmitted and reflected 
waves. The reflected wave height is obtained in a fashion similar to that of ob- 
taining the wave height ratio by use of the asymptotic form of V, at x --f - co. 

5 

a = uaZi/g 

FIGURE 18. W&ve height ratio in roll. 

10.0 

a = 2n~i/Z 

FIQURE 19. Reflexion coefficient. - - , circular cylinder, p = Oo, 
Dean & Ursell (1959). 
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Following that procedure the reflexion coefficient, which is defined as the ratio 
of the height of the reflected wave to the incident wave, is given by 

0.01 

a = 27r~iI.Z 

FIGURE 20. Transmission coefficient. 

Likewise, the transmission coefficient, which is defined as the ratio of the trans- 
mitted to incident wave height, is obtained by using the asymptotic form of 
@' at z+ + CQ and is given by 

The reflexion and transmission coefficients as obtained from (55) and (56) are 
plotted in figures 19 and 20, respectively. 

Results and discussion 
In  this paper, the potential problem was solved for an infinite length, zero- 

draft cylinder oscillating in heave and roll with amplitude varying periodically 
along its axis as well as the complementary problem associated with the inter- 
action of a fixed zero-draft cylinder with a wave train incident at some oblique 
angle. The results of the problem are necessarily dependent on the two parameters 
a = a"Z/g = 2nZlL and v = a sinp = (2nZsinp)lE = 2nii/i. For the case of the 
cylinder oscillating in still water the forms a = a2ii/g and v = 2ni%/i are the most 
appropriate form of the parameters. However, for the case of wave interaction 
with the fixed cylinder, a = 2n4L and p are the most appropriate forms of the 
two parameters and the numerical results are presented accordingly. 

The results presented in the figures were obtained by use of the numerical 
procedure discussed but there are certain limiting cases which can be solved 
directly and used as a check on the numerical results. For the two-dimensional 
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problem Kim (1965) has obtained the limiting form of the solution for a+O as 

v(0) = lim K(2, y) = 
a-0 

\ i f~( t )  is an even function of 6,  

This problem can be solved directly without recourse to approximate methods. 
The results are f! = hi 

and, accordingly, V3 = 2.rr 22 + (2 + 1) (z- 1) In - 

V, = V, = O(1nu) = i2. 

'[ (: 5 z ) ]  , 
These results provide the following limiting values for the added mass, damping 
and force coefficients: 

M,, = O(lna), N,, = 4.0, C, = 2, 

Jf33 = 1/n, N33 = 0, c, = 0, 

and the limiting form of the pressure amplitude distribution in roll as 

Another check on the accuracy of the numerical results can be made by 
extending Haskind's relations as advocated by Newman (1962) to the present 
case. For oblique waves this extension yields the relationship, 

c. = - - J(1- Y 2 / U 2 ) ,  
a u i q  lrm,,,J 

between the wave force (or moment) coefficient and wave height ratio and, 
the relationship, 

N..=  - %lax J( 1 - v 2 / a 2 ) ,  
ta  a21 x; 

between the damping coefficient and wave height ratio. Accordingly, a corres- 
pondence among the heave results presented in figures 11, 15 and 17 as well as 
among the roll results presented in figures 12,16 and 18 should be observed. A 
numerical check on these results shows, in fact, complete agreement. 

High-frequency (a+ co) asymptotic expressions for most of the results pre- 
sented herein were obtained for the case of v = 0 by Holford (1964) and can also 
be used to check the numerical results. These are given as 

n- 41na 
, M3,= G[l---+o(;)], 7Ta 
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Using Haskind's relations the asymptotic forms for the force coefficients become 

These asymptotic expressions are shown on the appropriate figures for compari- 
son with the present results. 

The limiting case of v-ta,  which corresponds to P-+9Oo, can also be used to 
check the numerical results. For this case the integral equation approaches the 
form 

1, i = 2, heave, 

1, i = 4, scattering, 
fi(a)+aSI:fr(E)G(~-5,O)dE = 

where the kernel approaches the form 

For the case of i = 2 and 4 the right side of the integral equation is unity and the 
solution has the asymptotic form 

- i ./( 1 - v2/aB) 
-?- 0. 

f z  -f4 - 2a 

However, for the case of roll (i = 3) the situation is not as simple. Here f&) 
is an odd function and, consequently, the integral of its product with the imagin- 
ary term in the kernel vanishes leaving 

where 

The solution to this integral equation is not straightforward and, therefore, 
no elementary function exists for f3(z). However, the asymptotic form for f, 
and f4 given above provides the following limiting relationships for v+a: 
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The dimensionless pressure amplitude distributions for heaving and rolling 
motion are shown in figures 6-8 for various values of the parameters v and a. 
These results indicate a general increase in pressure amplitude with a and a 
decrease with v. For the two-dimensional problem the limiting pressures vanish 
for a-+O while for v =l= 0 the limiting pressure amplitudes clearly approach 
a non-zero distribution for a -+ v. For heaving motion this limiting distribution 
is unity. For the two-dimensional case we note that (57) agrees very well with 
the numerical results of figure 6 for values of a as large as unity. 

On figure 6, MacCamy's (1964) results corresponding to v = 0 are shown for 
comparison. 

Figures 9 and 10 show the pressure amplitude due to wave interaction with 
a fixed zero-draft cylinder as a function of position on the cylinder and the 
parameter, a = 27riilE, for various values of the incidence angle, p. Generally 
it is evident that the pressure amplitudes decrease with increasing the angle 
of incidence, vanishing a t  p = go", while the results for p = 0, corresponding 
to the two-dimensional case, give the greatest pressure amplitudes. 

The variation of the pressure amplitude with position on the cylinder for a 
given value of a is also interesting. x = - 1, corresponding to the edge upon 
which the waves are incident, shows the maximum pressure amplitude with 
a general decrease across the cylinder. For the long waves, i.e. small values of a, 
the pressure is essentially constant across the cylinder whereas, for short waves 
the pressure amplitude rapidly decreases with distance from the leading edge. 
This illustrates the well-known behaviour that the short waves cannot penetrate 
under the cylinder while the long waves pass unchanged. 

The vertical, or heaving, wave force coefficient is shown in figure 11 as a 
function of a = 27riiIZ and the wave incidence angle, p, along with the asymp- 
totic form for a + 0 and oc). It is interesting and significant from a practical view 
point that the two-dimensional case, corresponding to /3 = 0, yields the maxi- 
mum wave force; the effect of incidence is to decrease the force. Although this 
conclusion has been demonstrated for the zero-draft case only, it can, no doubt, 
be applied in general and is, therefore, a very important result. 

The wave moment coefficient is shown in figure 12 as a function of a = 27riilL 
for various values of /3 along with the two-dimensional asymptotic forms for 
a -+ 0 and co. It is interesting that for the two-dimensional case the maximum 
value of the moment coefficient occurs a t  approximately a = 1.5 or 2Z = $Z. 
This is in agreement with intuition since the maximum differences in pressure 
in the incident wave occurs between the crest and trough, i.e. within half a 
wavelength, and one would expect this to produce the maximum moment. 

The added mass and moment of inertia coefficients are presented in figures 
13 and 14. The two-dimensional added mass coefficient in heave is logarithmic- 
ally singular a t  a = 0 while the added moment of inertia coefficient has a limiting 
value of 1/77. The asymptotic expressions for a+co for both M,, and are also 
shown on the figures for comparison. 

We note that MacCamy (1964) also has presented numerical values for M,, 
and .M33 for v = 0 which are in agreement with the present results although 
they are not presented. 
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The damping coefficients in heave and roll are shown in figures 15 and 16, 
respectively. I n  either case the effect of v is similiar; increasing v tends to de- 
crease the damping. In  these figures the damping is seen to vanish when a = v 
in agreement with the limiting form of the solution. This feature may be inter- 
preted physically as being due to the condition that when a = v (p = 90") the 
wave crests are perpendicular to the axis of the cylinder and, therefore, no 
energy is propagated away from the cylinder in the st x directions. Consequently, 
the damping coefficient, which is associated with this energy flux, must be zero. 

MacCamy (1964) has also presented numerical results for N,, and N33 for the 
two-dimensional case which are in agreement with the present results. 

The low-frequency approximation for the damping coefficient in roll for 
the two-dimensional case may be obtained as a special case of that for an ellip- 
tical cylinder as determined by Kotik & Mangulis (1962) as 

N33 = 9.2 + O( a,). 

For comparison we plot $a2 in figure 16. We also find the present numerical re- 
sults in agreement with the limiting value of N,, = 4-0 at a = v = 0. 

The high-frequency (a .+ co) asymptotic expression for the two-dimensional 
case as determined by Holford (1964) for N,, is shown in figure 15. The corres- 
ponding asymptotic expression, N33 = $n( l /a) ,  is still well above the numerical 
results at the largest value of a on figure 16. 

The wave height ratios for heave and roll are shown in figures 17 and 18 and, 
generally, both of these curves indicate the same effect of v = 27rSilf; increasing 
v decreases the wave height ratios. 

On figure 17 Holford's two-dimensional high-frequency (a  + 00) asymptotic 
expression is shown. The corresponding asymptotic expression for roll is still 
well above the v = 0 curve indicated in figure 18. 

Figures 19 and 20 show the reflexion and transmission coefficients, respectively, 
as a function of the parameters, a = 27rGlZ and p for the fixed, zero-draft cylinder 
along with the short wave asymptotic expressions. As indicated by the figure, 
increasing ,8 corresponds to increasing reflexion coefficients with a limiting value 
of unity at J = 90". The two-dimensional case shows the greatest transmission 
and least reflexion and, therefore, is the most critical case in the design of break- 
waters. This is a very important result to those involved in testing since most 
test work is carried out in two-dimensional wave tanks. 

We note that Levine's (1965) results for a completely submerged circular 
cylinder show the same general trends with no reflexion occurring at  ,8 = 0 
and complete reflexion occurring at /I = 90". 

The curve attributed to Dean & Ursell (1959) for a semi-submerged circular 
cylinder was included for comparison to illustrate the effect of draft. 

Appendix A 
The infinite integral term in the Green's function given in (30) was arranged in 

a number of parts, one of which was analytically integrable and two of which 
required numerical integration. As part of the numerical evaluation of the 
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second of these integrals, as it appears in (33), it  was necessary to replace the 
infinite upper limit with some suitable large number. The question arises as to 
the magnitude of the error introduced by this approximation. To put bounds on 
the maximum possible error we compare the portion of the integral neglected 
to the total infinite integral term as given in (30). Replacing u in the lower limit 
of the original integral term by P, where P 9 u, we have for the error, e, 

Both the maximum value of (7 - J(T~-  v2) ) and the minimum value of 
occur at T,I = P. Thus, 

v2) 

P/u- p / v 2 -  1) 
1/(P2/v2- 1) * 

e <  

Using Plv = 50 we find 
1 

5000 ' 
e < -  

Appendix B 
The purpose of this appendix is to show that the approximate relationship, 

(37)  converges to (36) for the logarithmic term occurring in G when i = j +  1. 
That is, carrying out the integration of the logarithmic term analytically over 
the i = j + 1 interval according to (36) gives 

xj+i+Az/2 
In Ixj-tl dt = AxlnAx-O~044Ax, (B 1) s xj+t-Ad:/2 

and by use of (37) we obtain 

Axln / X , - X ~ + ~ ~  = AxlnAx. (B2) 

Thus, comparing expressions (B 1) and (B 2) it is evident that the result given 
by (37) does, in fact, converge to that given by (36) for 21m = Ax+ 0. 

For m = 40 we find the ratio of (B 2) to (B 1) to be 

= 0.985. 

Thus, an error of 1.5 yo is introduced by using ( 3 7 )  instead of (36) for the most 
critical element of i = j + 1. 
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